The epidermal barrier function is dependent on the serine protease CAP1/Prss8
نویسندگان
چکیده
Serine proteases are proteolytic enzymes that are involved in the regulation of various physiological processes. We generated mice lacking the membrane-anchored channel-activating serine protease (CAP) 1 (also termed protease serine S1 family member 8 [Prss8] and prostasin) in skin, and these mice died within 60 h after birth. They presented a lower body weight and exhibited severe malformation of the stratum corneum (SC). This aberrant skin development was accompanied by an impaired skin barrier function, as evidenced by dehydration and skin permeability assay and transepidermal water loss measurements leading to rapid, fatal dehydration. Analysis of differentiation markers revealed no major alterations in CAP1/Prss8-deficient skin even though the epidermal deficiency of CAP1/Prss8 expression disturbs SC lipid composition, corneocyte morphogenesis, and the processing of profilaggrin. The examination of tight junction proteins revealed an absence of occludin, which did not prevent the diffusion of subcutaneously injected tracer (approximately 600 D) toward the skin surface. This study shows that CAP1/Prss8 expression in the epidermis is crucial for the epidermal permeability barrier and is, thereby, indispensable for postnatal survival.
منابع مشابه
PAR2 absence completely rescues inflammation and ichthyosis caused by altered CAP1/Prss8 expression in mouse skin
Altered serine protease activity is associated with skin disorders in humans and in mice. The serine protease channel-activating protease-1 (CAP1; also termed protease serine S1 family member 8 (Prss8)) is important for epidermal homeostasis and is thus indispensable for postnatal survival in mice, but its roles and effectors in skin pathology are poorly defined. In this paper, we report that t...
متن کاملThe Channel-Activating Protease CAP1/Prss8 Is Required for Placental Labyrinth Maturation
The serine protease CAP1/Prss8 is crucial for skin barrier function, lung alveolar fluid clearance and has been unveiled as diagnostic marker for specific cancer types. Here, we show that a constitutive knockout of CAP1/Prss8 leads to embryonic lethality. These embryos presented no specific defects, but it is during this period, and in particular at E13.5, that wildtype placentas show an increa...
متن کاملENaC-mediated alveolar fluid clearance and lung fluid balance depend on the channel-activating protease 1
Sodium transport via epithelial sodium channels (ENaC) expressed in alveolar epithelial cells (AEC) provides the driving force for removal of fluid from the alveolar space. The membrane-bound channel-activating protease 1 (CAP1/Prss8) activates ENaC in vitro in various expression systems. To study the role of CAP1/Prss8 in alveolar sodium transport and lung fluid balance in vivo, we generated m...
متن کاملReduced Prostasin (CAP1/PRSS8) Activity Eliminates HAI-1 and HAI-2 Deficiency–Associated Developmental Defects by Preventing Matriptase Activation
Loss of either hepatocyte growth factor activator inhibitor (HAI)-1 or -2 is associated with embryonic lethality in mice, which can be rescued by the simultaneous inactivation of the membrane-anchored serine protease, matriptase, thereby demonstrating that a matriptase-dependent proteolytic pathway is a critical developmental target for both protease inhibitors. Here, we performed a genetic epi...
متن کاملThe Epithelial Sodium Channel ENaC and its Regulators in the Epidermal Permeability Barrier Function
The highly amiloride-sensitive epithelial sodium channel ENaC is well known to be involved in controlling whole body sodium homeostasis and lung liquid clearance. ENaC expression has also been detected in the skin of amphibians and mammals. Mice lacking ENaC expression lose rapidly weight associated with an epidermal barrier defect that develops following birth. This dehydration is accompanied ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 170 شماره
صفحات -
تاریخ انتشار 2005